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3D HUMAN POSE AND SHAPE MODELING

CROSS-REFERENCE TO RELATED
APPLICATION

This application claims the benefit of priority to U.S. Pro-
visional Patent Application No. 61/700,033, filed Sep. 12,
2012, the contents of which are incorporated herein by refer-
ence in their entirety.

BACKGROUND

1. Field

This disclosure relates to video surveillance, such as video
surveillance methods and systems and video verification
methods and systems. Video surveillance systems, devices
and methods are disclosed that may detect humans. Video
surveillance systems, devices and methods may count
humans and/or monitor human crowd scenarios in video
streams.

2. Background

Intelligent Video Surveillance (IVS) system may be used to
detect events of interest in video feeds in real-time or offline
(e.g., by reviewing previously recorded and stored video).
Typically this task is accomplished by detecting and tracking
targets of interest. This usually works well when the scene is
not crowded. However, the performance of such a system may
drop significantly in crowded scenes. In reality, such crowded
scenes occur frequently, thus, being able to detect humans in
crowds is of great interest. Such detection of humans may be
used for counting and other crowd analyses, such as crowd
density, crowd formation and crowd dispersion.

Previous crowd analysis work addresses some specific
extremely crowded scenarios like certain sport or religious
events. However, there is a need to also focus on more com-
mon surveillance scenarios where large crowds may form
occasionally. These include public places such as streets,
shopping centers, airports, bus and train stations, etc.

Recently, the problem of crowd density estimation or
counting people in crowd is gaining significant attentions in
research community as well as from industry. The existing
approaches mainly include map-based (indirect) approaches
and/or a detection-based (direct) approaches.

A map-based approach may attempt to map the number of
human targets to extracted image features, such as the amount
of' motion pixels, the foreground blob size, foreground edges,
group of foreground corners, and other image features. The
map-based approach usually requires training for different
types of video scenarios. The research is mainly focused on
looking for reliable features that correspond well with the
people count and on how to deal with some special issues
such as shadows and camera view perspective. Under many
scenarios, the map-based approach may provide fairly accu-
rate human count estimates given enough training videos.
However, the performance is usually scene dependent, and
the actual locations of each individual may be unavailable.

A detection-based approach may count the number of
people in the scene by identifying each individual human
target. The research has been focused on human detection,
human parts detection and joint-consideration of detection
and tracking. These approaches may provide more accurate
detection and counting in lightly crowded scenarios. If the
location of each individual can be made available, it may be
possible to compute local crowd density. The key challenges
of these approaches are higher computational cost, view-
point dependent learning and relatively large human image
size requirement.
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2

The embodiments described here address some of these
problems of existing systems.

SUMMARY

The disclosed embodiments provide methods, devices and
systems for intelligent analysis of video images to detect
objects, such as human objects.

In certain embodiments, a method of detecting human
objects in a video comprises determining that certain pixels of
avideo image are foreground pixels, the group of foreground
pixels constituting a foreground blob set of one or more
foreground blobs; for each of N locations within the video
image, where N is an integer, comparing a predetermined
shape with the foreground blob set to obtain a corresponding
probability of a human at the location, thereby obtaining N
probabilities corresponding to the N locations; and using the
N probabilities, determining X humans are represented by the
foreground blob set, where X is whole number.

A method of detecting human objects in a video, may
comprise determining pixels of a video image of a real world
scene are foreground pixels, the group of foreground pixels
constituting a foreground blob set of one or more foreground
blobs; and for each of N locations within the video image,
where N is an integer, comparing a predetermined shape with
the foreground blob set to determine X humans are repre-
sented by the foreground blob set, where X is whole number.

Methods may include determining a location of each of the
X humans. The locations of each of the X humans may be
determined as a location within a horizontal plane of the real
world, such as a location on a physical ground plane of the
real world.

The detection of the human objects may be used to count
humans, for crowd analyses and for other event detections.

System and devices are disclosed which may be configured
to perform such methods.

Computer readable media containing software that may be
used to configure a computer to perform the operations
described herein and comprise further embodiments of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will be more clearly understood
from the following detailed description taken in conjunction
with the accompanying drawings. The figures represent non-
limiting example embodiments as described herein.

FIG. 1 illustrates an exemplary video surveillance system
according to an exemplary embodiment of the invention.

FIG. 2 illustrates an exemplary frame from a video stream
from the video surveillance system according to an exem-
plary embodiment of the invention.

FIG. 3A illustrates an exemplary flow diagram for target
detection and counting according to an exemplary embodi-
ment of the invention.

FIG. 3B illustrates an example where several human mod-
els occupy a two-dimensional video image, each correspond-
ing to a different location with respect to the two-dimensional
video image

FIG. 3C illustrates a single row of (x, y) identifying coor-
dinates 321 each associated with a corresponding human
model 320.

FIG. 3D illustrates an exemplary method for calculating a
human probability map.

FIG. 3E illustrates an exemplary method of performing a
single pass of the probability map as part of finding a best
number of human models within a video image.
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FIG. 3F illustrates a method of performing plural passes of
the probability map as to find the best number of human
models within a video image.

FIG. 4 illustrates a generic human model that includes a 3D
cylinder model and its corresponding 2D convex hull model.

FIG. 5 illustrates a generic flat-earth camera model that
may be calibrated using several human image samples.

FIGS. 6A, 6B and 6C shows exemplary detection results.

FIGS. 7A, 7B and 7C illustrate an example of regarding
human crowd density based on the human detection results.

FIG. 8 illustrates exemplary implementations for detecting
various crowd related events.

FIG. 9 illustrates an exemplary method of how to define
and detect a crowded area.

FIG. 10 illustrates an exemplary process on each detected
human target.

FIG. 11 illustrates an exemplary process on each crowd
region.

FIG. 12 illustrates a method that may be used to define and
detect crowd “gathering” and “disperse” events.

FIG. 13 illustrates one example of defining of a crowd
gathering spot.

FIGS. 14A and 14B show an example of a crowd gathering
spot.

FIG. 15 illustrates an exemplary method of detecting the
crowd gathering spots.

FIG. 16 illustrates an exemplary method of updating the
crowd gathering spots and detecting of crowd “gathering”
and “disperse” events.

FIG. 17 illustrates an exemplary implementation using
plural video cameras.

DETAILED DESCRIPTION

Various exemplary embodiments will be described more
fully hereinafter with reference to the accompanying draw-
ings, in which some exemplary embodiments are shown. The
present invention may, however, be embodied in many differ-
ent forms and should not be construed as limited to the
example embodiments set forth herein. These example
embodiments are just that—examples—and many imple-
mentations and variations are possible that do not require the
details provided herein. It should also be emphasized that the
disclosure provides details of alternative examples, but such
listing of alternatives is not exhaustive. Furthermore, any
consistency of detail between various examples should not be
interpreted as requiring such detail—it is impracticable to list
every possible variation for every feature described herein.
The language of the claims should be referenced in determin-
ing the requirements of the invention. In the drawings, the
sizes and relative sizes of layers and regions may be exagger-
ated for clarity. Like numerals refer to like elements through-
out.

It will be understood that, although the terms first, second,
third etc. may be used herein to describe various elements,
these elements should not be limited by these terms. These
terms are used to distinguish one element from another. Thus,
a first element discussed below could be termed a second
element without departing from the teachings of the present
inventive concept. As used herein, the term “and/or” includes
any and all combinations of one or more of the associated
listed items.

It will be understood that when an element is referred to as
being “connected” or “coupled” to another element, it can be
directly connected or coupled to the other element or inter-
vening elements may be present. In contrast, when an element
is referred to as being “directly connected” or “directly
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4

coupled” to another element, there are no intervening ele-
ments present. Other words used to describe the relationship
between elements should be interpreted in a like fashion (e.g.,
“between” versus “directly between,” “adjacent” versus
“directly adjacent,” etc.).

The terminology used herein is for the purpose of describ-
ing particular exemplary embodiments only and is not
intended to be limiting of the present inventive concept. As
used herein, the singular forms “a,” “an” and “the” are
intended to include the plural forms as well, unless the con-
text clearly indicates otherwise. It will be further understood
that the terms “comprises™ and/or “comprising,” when used in
this specification, specify the presence of stated features,
integers, steps, operations, elements, and/or components, but
do not preclude the presence or addition of one or more other
features, integers, steps, operations, elements, components,
and/or groups thereof.

Unless otherwise defined, all terms (including technical
and scientific terms) used herein have the same meaning as
commonly understood by one of ordinary skill in the art to
which this inventive concept belongs. It will be further under-
stood that terms, such as those defined in commonly used
dictionaries, should be interpreted as having a meaning that is
consistent with their meaning in the context of the relevant art
and will not be interpreted in an idealized or overly formal
sense unless expressly so defined herein.

Definitions. In describing the invention, the following defi-
nitions are applicable throughout (including above).

“Video” may refer to motion pictures represented in analog
and/or digital form. Examples of video may include: televi-
sion; a movie; an image sequence from a video camera or
other observer; an image sequence from a live feed; a com-
puter-generated image sequence; an image sequence from a
computer graphics engine; an image sequence from a storage
device, such as a computer-readable medium, a digital video
disk (DVD), or a high-definition disk (HDD); an image
sequence from an IEEE 1394-based interface; an image
sequence from a video digitizer; or an image sequence from a
network.

A “video sequence” may refer to some or all of a video.

A “video camera” may refer to an apparatus for visual
recording. Examples of a video camera may include one or
more of the following: a video imager and lens apparatus; a
video camera; a digital video camera; a color camera; a mono-
chrome camera; a camera; a camcorder; a PC camera; a
webcam; an infrared (IR) video camera; a low-light video
camera; a thermal video camera; a closed-circuit television
(CCTV) camera; a pan, tilt, zoom (PTZ) camera; and a video
sensing device. A video camera may be positioned to perform
surveillance of an area of interest.

“Video processing” may refer to any manipulation and/or
analysis of video, including, for example, compression, edit-
ing, surveillance, and/or verification.

A “frame” may refer to a particular image or other discrete
unit within a video.

A “computer” may refer to one or more apparatus and/or
one or more systems that are capable of accepting a structured
input, processing the structured input according to prescribed
rules, and producing results of the processing as output.
Examples of a computer may include: a computer; a station-
ary and/or portable computer; a computer having a single
processor, multiple processors, or multi-core processors,
which may operate in parallel and/or not in parallel; a general
purpose computer; a supercomputer; a mainframe; a super
mini-computer; a mini-computer; a workstation; a micro-
computer; a server; a client; an interactive television; a web
appliance; a telecommunications device with internet access;
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a hybrid combination of a computer and an interactive tele-
vision; a portable computer; a tablet personal computer (PC);
a personal digital assistant (PDA); a portable telephone;
application-specific hardware to emulate a computer and/or
software, such as, for example, a digital signal processor
(DSP), a field-programmable gate array (FPGA), an applica-
tion specific integrated circuit (ASIC), an application specific
instruction-set processor (ASIP), a chip, chips, or a chip set;
asystem on a chip (SoC), or a multiprocessor system-on-chip
(MPSoC); an optical computer; a quantum computer; a bio-
logical computer; and an apparatus that may accept data, may
process data in accordance with one or more stored software
programs, may generate results, and typically may include
input, output, storage, arithmetic, logic, and control units.

“Software” may refer to prescribed rules to operate a com-
puter. Examples of software may include: software; code
segments; instructions; applets; pre-compiled code; com-
piled code; interpreted code; computer programs; and pro-
grammed logic.

A “computer-readable medium” may refer to any storage
device used for storing data accessible by a computer.
Examples of a computer-readable medium may include: a
magnetic hard disk; a floppy disk; an optical disk, such as a
CD-ROM and a DVD; a magnetic tape; a flash removable
memory; a memory chip; and/or other types of media that can
store machine-readable instructions thereon.

A “computer system” may refer to a system having one or
more computers, where each computer may include a com-
puter-readable medium embodying software to operate the
computer. Examples of a computer system may include: a
distributed computer system for processing information via
computer systems linked by a network; two or more computer
systems connected together via a network for transmitting
and/or receiving information between the computer systems;
and one or more apparatuses and/or one or more systems that
may accept data, may process data in accordance with one or
more stored software programs, may generate results, and
typically may include input, output, storage, arithmetic,
logic, and control units.

A “network” may refer to a number of computers and
associated devices that may be connected by communication
facilities. A network may involve permanent connections
such as cables or temporary connections such as those made
through telephone or other communication links. A network
may further include hard-wired connections (e.g., coaxial
cable, twisted pair, optical fiber, waveguides, etc.) and/or
wireless connections (e.g., radio frequency waveforms, free-
space optical waveforms, acoustic waveforms, etc.).
Examples of a network may include: an internet, such as the
Internet; an intranet; a local area network (LLAN); a wide area
network (WAN); and a combination of networks, such as an
internet and an intranet. Exemplary networks may operate
with any of a number of protocols, such as Internet protocol
(IP), asynchronous transfer mode (ATM), and/or synchro-
nous optical network (SONET), user datagram protocol
(UDP), IEEE 802 x, etc.

In some embodiments, a crowd density estimation method,
system and device may be based on existing video content
analysis methods, systems and devices. Besides the basic
estimation accuracy requirement, the approach may include
one or more of the following:

Camera view independence may allow embodiments to
work on a wide range of application scenarios regardless
of variations in camera location, view angle, number of
pixels on target, etc.
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Relatively low computational cost that may run in real-
time. The embodiments may be implemented on an
embedded system.

Complex initial set up and training may be reduced and/or
eliminated, allowing more convenience and a lower cost
of ownership.

Some examples disclosed herein include a detection-based
approach and no training may be required. The examples may
be implemented with a general IVS system, which already
performs basic detection and tracking tasks and provides a
reliable foreground mask. A convex region human image
model may be computed for every image pixel, which may be
used to estimate the number of human targets in each fore-
ground region. Camera calibration data may provide the map-
ping from the image plane to the ground plane in physical
world, which may be used to provide actual crowd density
measurements in areas within the camera view. Using the
actual crowd density measurement(s), other events of interest
may be detected, for example, “crowd hot spot”, “crowd
gathering”, “crowd dispersing”, etc.

FIG. 1 illustrates a video surveillance system 101 accord-
ing to exemplary embodiments of the invention. The video
surveillance system may be configured to detect and monitor
human crowd activities in video streams. The video surveil-
lance system 101 may be used in a variety of applications
where human detection is of interest, such as use for crowd
density analyses. For example, the embodiments may be used
for suspicious people gathering detection, pedestrian traffic
statistic collection, abnormal crowd formation and/or disper-
sion, etc. The video surveillance system 101 may include a
video source 102 (e.g., a video camera or memory, such as a
hard drive, with stored video), a change detection module
103, amotion detection module 104, a foreground blob detec-
tion module 105, a human detection module 106, a target
tracking module 107 and an event detection module 108. In
this example, the video source (e.g., video camera) is station-
ary. However, one of ordinary skill will recognize the inven-
tion also applies to mobile video sources. In this example, the
video source provides a single video stream. However, the
invention also contemplates use of and processing of multiple
video streams.

The video surveillance system may be implemented with a
typical stationary platform IVS system. By way of example,
see U.S. Pat. No. 7,868,912 issued to Venetianer et al. and
U.S. Pat. No. 7,932,923 issued to Lipton et al., both of which
are incorporated herein by reference in their entirety, for
exemplary details of an IVS system which may be used to
implement the embodiments described here. U.S. Pat. Nos.
7,868,912 and 7,932,923 are also incorporated by reference
for exemplary details of video primitive (or metadata) gen-
eration and downstream processing (which may be real time
processing or later processing) to obtain information from the
video, such as event detection, using the generated video
primitives, which may be used with the embodiments dis-
closed herein. Each module 103-108, as well as their indi-
vidual components, alone or as combined with other mod-
ules/components, may be implemented by dedicated
hardware (circuitry), software and/or firmware. For example,
a general purpose computer programmed with software may
implement all of the modules. As such, computer readable
media containing software that may be used to configure a
computer to perform the operations described herein com-
prise further embodiments of the invention. As another
example, to implement the systems, devices and methods
described herein, various computing and optical components
may be used, such as one or more of the following: a general
purpose computer; supercomputer; a mainframe; a super
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mini-computer; a mini-computer; a workstation; a micro-
computer; a server; an interactive television; a hybrid combi-
nation of a computer and an interactive television; a smart
phone; a tablet; and application-specific hardware to emulate
a computer and/or software. These may include one or more
processors, one of more field programmable gate arrays (FP-
GAs), computer memory, a computer-readable medium such
as, for example, any storage device used for storing data
accessible by a computer (e.g., a processor may perform
various algorithms on data received from a camera device,
and a computer memory can then store the information about
the various pixels and can store results of blob detection,
target detection, and event detection). Examples of a com-
puter-readable medium include: a magnetic hard disk; a
floppy disk; an optical disk, such as a CD-ROM and a DVD;
a magnetic tape; a memory chip; a solid state storage device;
and a carrier wave used to carry computer-readable electronic
data, such as those used in transmitting and receiving e-mail
or in accessing a network. A tangible computer-readable
medium includes computer-readable media, such as listed
above, that are physically tangible. In addition, software may
be used in combination with the computing and/or optical
components to implement the methods described herein.
Software may include rules and/or algorithms to operate a
computer, and may include, for example, code segments,
instructions, computer programs, and programmed logic. The
video source 102 and modules 103-108 may be within a
single system or may be dispersed. For example, video source
102 may comprise a video camera at the area to be monitored.
Video source 102 providing a video stream to a monitoring
location (e.g., a separate second location offsite from the
location to be monitored) where modules 103-107 are
located. Event detection module 108 may be provided at a
third location (e.g., a central station) separate from the moni-
toring location and the second location. The various modules,
computers, cameras, and other image equipment described
herein can be connected over a network, which may involve
permanent connections such as cables or temporary connec-
tions such as those made through telephone or other commu-
nication links, and also may include wireless communication
links. Examples of a network include: an internet, such as the
Internet; an intranet; a local area network (LLAN); a wide area
network (WAN); and a combination of networks, such as an
internet and an intranet. The various hardware and software
examples described above are also described in greater detail
in the patent documents incorporated by reference herein.
Change pixels may be detected by the change detection
module 103 as the pixels of the video image provided by
video source 102 that are different from a previously obtained
background image. The background image may be dynamic.
The dynamic background image model may be continuously
built and updated from the incoming video frames. Thus,
changes in lighting, weather, etc., which modify the video
image may be accounted for in the background image. In 104,
frame differencing may be used to detect moving pixels. In
105, one or both of the change pixels from module 103 and
moving pixels from module 104 are considered to determine
foreground pixels which are spatially grouped into fore-
ground blobs. The video image may be processed by existing
video content analysis systems and methods to extract fore-
ground, foreground blobs and foreground blobs of interest
(such as human foreground blobs), such as like described in
U.S. Pat. No. 7,825,954, to Zhang et al., published on Nov. 2,
2010, the contents of which are incorporated herein by refer-
ence in their entirety. Depth sensor information may option-
ally be used to estimate a real-world height or size of each
object detected as a potential human being, and as a result, the
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blobs corresponding to potential human targets (as contrasted
with blobs not of interest) may be more accurately identified.
Depth sensor information may optionally be used to eliminate
shadows, specularities, objects detected as outside the area of
interest, objects too far away (e.g., that may not be close
enough to allow for accurate analyses), or other elements of
the video image that may increase the risk of faulty analysis of
the video image. Exemplary details of use of depth informa-
tion may be found in U.S. patent application Ser. No. 13/744,
254 to Zhang et al., the contents of which are incorporated by
reference in their entirety. The blobs are tracked over time to
form spatio-temporal targets in target tracking module 107,
and finally, event detection module 108 detects the event of
interest defined by the user using the output of the target
detection and tracking process. Instead of or in addition to
simple spatial grouping of foreground pixels into blobs,
human detection module 106 uses calibration information
and a convex region shaped human model to detect humans
even in crowded scenarios. In some examples, no or minimal
training is required in advance for detecting the human
objects in the scene. And in the event detection module 108,
some novel event detection approaches may be implemented,
which may use the human detection results in human detec-
tion module 106.

FIG. 2 shows video images corresponding to some typical
application scenarios for the IVS system 101 including out-
door plazas, streets, tourist attractions, train stations, shop-
ping malls, metro stops, etc. As can be seen, depending on the
position of the camera relative to the scene being videoed, the
relative size and shape of the people occupying video images
differ.

FIG. 3 A shows a block diagram providing more exemplary
details of the video surveillance system 101. Foreground blob
detection module 105 may be the same as that in FIG. 1.
Modules 301, 302, 303, 304, 305 and 306 may be clements of
the human detection module 106 of FIG. 1. Human body pixel
detection module 301 detects human body pixels based on the
change pixel results from change detection module 103.
These pixels are either significantly different from the back-
ground image model (e.g., a brightness difference and/or a
color difference exceeds a respective threshold), or located
between high confident foreground edge pixels. They are
considered most likely to be legitimate human body pixels in
the image. See, e.g., 301a of FIG. 6A as an example of
detected human body pixels. Other change pixels may be
excluded from further human detection processing, since they
most likely represent shadows or reflections. Human bound-
ary pixel detection module 302 detects human boundary pix-
els where the boundary of the foreground blobs aligns with
the image edges of the current video frame. See, e.g., 302a of
FIG. 6A as an example of detected human boundary pixels.
When performing human detection, other analyses may be
implemented (in addition to or in replacement of those
described above) to assist the determination that a human
body has been detected. For example, it may be required that
each potential human blob has to contain a certain number of
boundary foreground edge pixels. As another example, other
processing may recognize blob(s) as likely being associated
with an object other than a human (such as a vehicle) and
exclude such blob(s) from further human detection process-
ing. Other foreground blobs not considered to be a potential
human may be excluded from the foreground blob set. Alter-
natively, any detected blob may be part of the foreground blob
set.

Generic human model module 303 provides a generic
human 3D and 2D model. For example, the generic human
model module 303 may convert a 3D human model to a 2D
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human model by mapping or projecting a 3D human model in
the real world to a 2D image plane of the video image. FIG. 4
shows an exemplary 3D model 303a mapped to a correspond-
ing 2D human model 3035 on image plane 330. The 3D
human model 3034 may be a set of simple 3D shapes, such as
a group of cylinders (e.g., one cylinder for the legs, one
cylinder for the torso and one cylinder for the head). The same
3D human model 303a (e.g., the cylinder model) may be used
with various video camera positions so that a different angle
of'the video camera with respect to the ground (ground plane
of' the real world) may be used to obtain a differently shaped
2D human model 3035 in the image plane of the video cam-
era. For example, taking a 3D cylinder human model as an
example, a camera angle providing a top-down view of a
particular location may map to a circle in the 2D image plane,
where as a camera angle having an oblique view of the same
location may map the 3D cylinder human model to a different
shape having an elongated form. In the example shown in
FIG. 17, camera 1702 may have more of a top down view of
3D human model 303a as compared to camera 1704, which
may have more of a side view of 3D human model 303a as
compared to camera 1702. If the distances of the cameras
1702 and 1704 from 3D human model 303a are the same, the
corresponding 2D human model mapped to the image plane
of camera 1702 be more compact (e.g., shorter) than the 2D
human model mapped to the image plane of camera 1704. The
2D human model may have a convex shape that may be
obtained by interpolating points of external edges of the pro-
jection of the 3D human model to the 2D image plane.

FIG. 4 illustrates a generic human model that includes a 3D
cylinder model 303¢ and its corresponding 2D convex hull
model 3035 mapped to 2D image plane 330. The 3D human
model 303a consists of a leg cylinder, a torso cylinder and a
head cylinder. The length and radius of each cylinder may
correspond to the physical statistical data representing the
typical dimensions of a typical ordinary human. As shown in
FIG. 4, these three cylinders have four key planes: head plane,
shoulder plane, hip plane and foot plane. To obtain the corre-
sponding 2D human model at a particular location, we can
uniformly sample along the perimeter of the four key planes
and project each 3D sample point onto the 2D image plane
using the camera calibration parameters to determine the
appropriate size and orientation with respect to a particular
location within the 2D image space. These corresponding
image sample points can then be used to form a convex hull on
the image through a convex formation method, which can be
used as the 2D image human model.

FIG. 5 illustrates a generic flat-earth camera model which
can be calibrated using several human image samples. The
camera model may contain only three parameters: the camera
height relative to the ground, its tilt-up angle and the focal
length of the camera. These parameters can be estimated
using three or more human samples from the video frames as
described in “A Robust Human Detection and Tracking Sys-
tem Using a Human-Model-Based Camera Calibration” (The
8th International Workshop on Visual Surveillance, 2008, Z.
Zhang, P. L. Venetianer and A. J. Lipton) and U.S. Pat. No.
7,801,330, to Zhang et al., published on Sep. 21, 2010, the
contents of each which are incorporated herein by reference
in their entirety.

In the alternative, or in addition, the generic human model
module 303 may have a predetermined 2D model that may be
modified (e.g., stretched, shrunk, tilted with respect to a ver-
tical axis of the 2D image plane, etc.) in response to a camera
angle of the video camera taking the video image. Several
generic human models may be provided by generic human
model module 303. Human models may also include model-
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ing for typical accessories. For example, when using the
system outdoors, a first human model may be used for warm
weather, a second larger human model may be used in cold
weather (where coats may be expected to be worn and con-
sidered part of the human model) and a third human model
may be used for rainy weather (where umbrellas may be
expected to be used and considered part of the human model).

Generic human model module 303 also provides an esti-
mate of various sizes of the 2D human model at correspond-
ing locations within the image space. The image space may
correspond to the two dimensional space of an image in a
frame of video provided by video source 102. An image space
may be measured in pixel increments, such that locations
within the image space are identified by pixel coordinates. A
video camera may take a video image, comprising a two-
dimensional image of the three dimensional real world. When
ahuman is present at a certain location within the real world,
the human may be expected to occupy a certain amount of
foreground at a certain location within the two dimensional
video image. Ifthe human is far away from the video camera,
the image size of the human may be expected to be relatively
small as compared to the image size of a human close to the
video camera. For each of a plurality of locations within the
two dimensional video image space, generic human model
module 303 may provide an human model having a size
corresponding to the location within the two dimensional
image space. For each location, the 2D human model may
have dimensions and/or a size responsive to the respective
location within the image space of the two dimensional video
image. Orientation of these human models may also be
responsive to location within the two dimensional image
space. For example, some camera lenses (e.g., wide angle
lenses) may represent a vertical direction in the real world
with a first direction at one side of the video image frame and
a second, different direction at a second side of the video
image frame. The 2D human models may have different ori-
entations at different sides of the video image frame (and
other locations) in response to the different representations of
the real world vertical direction.

Locations of each of the plural human models within the
2D video image space may be associated identifying coordi-
nates within the 2D video image space. The identifying coor-
dinates may correspond to pixel locations of a video having
the 2D video image space. For example, a location corre-
sponding to the 107 row, 22" column of a pixel array may be
correspond to an identifying coordinate of (10, 22). For each
of the plural locations within the 2D video image space, the
generic human model module 303 may map a particular point
of'the human model to the associated identifying coordinate.
For example, the particular point of the human model may be
the top of the human model corresponding to the human’s
head, the bottom of the human model corresponding to the
human’s foot, the centroid of the shape of the human model
corresponding to a center of a human. The remainder of the
human model may be mapped to the 2D video image space
relative to the associated identifying coordinate and size of
the human model based on a fixed relationship between the
particular point of the human model and the remainder of the
human model. As an example, assume the human model is a
circle. For each pixel within the 2D video image space, the
center of a corresponding circle is mapped (e.g., associated
with (X, y) coordinates of the 2D video image space), where
the remainder of the circle shape is mapped to the 2D video
image space taking into consideration the corresponding size
of the circle (and the known relationship of the circle to its
center). A location of particular portion of the human (such as
the top of the human’s head, the bottom of the human’s foot,
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the center of the human) in the three dimensional real world
may have a unique correspondence to its location in the two
dimensional video image, and thus, existence of this particu-
lar point of the human within the two dimensional video
image may be used to determine a location of the human
within the three dimensional real world.

Generic human model module 303 may also determine a
size of the human model for each identifying location within
the 2D image space. The size of the human model may be
obtained from calibration of the video surveillance system
101. For example, a calibration model of known size may
move around the area to be monitored while the video sur-
veillance system 101 takes video for calibration purposes.
The calibration model may be a person of known height
walking around the monitored area. During calibration, the
system may identify the calibration model in the video as a
foreground blob and recognize (e.g., by accessing calibration
information provided to the video surveillance system 101
regarding the size of the calibration model) that the fore-
ground blob corresponds to a predetermined size (e.g., a
predetermined height). Here, as the calibration model moves
through the area to be monitored during video calibration, for
various locations within the video image, the system may
correlate the known height of the calibration model to a size
in the 2D video image. For example, when a center of the
calibration model is at location (x1, y1), the height of the
calibration model may be 15 pixels (or may be measured in
some other measurement). When the center of the calibration
model is at location (x2, y2), the calibration model may be 27
pixels in height. Thus, the video surveillance system 101 may
correlate dimensions of the 2D video image at particular
locations (e.g., (X, y) coordinates)) in the 2D video image to
sizes (e.g., heights) in the real world by correlating the 2D
video image size to the known size (e.g., height) of the cali-
bration model. Based on the known correlation (obtained
through this calibration) between real world sizes and the
dimensions within the 2D video image at particular locations
(e.g., (x,y) coordinates)) within the 2D image, the 2D size of
the human model within the 2D video image space may be
calculated for each of the various locations ((x, y) coordi-
nates)) within the 2D video image to correspond to an average
human size within the real 3D world.

For examples of calibration procedures, see U.S. Pat. No.
7,932,923 issued to Lipton et al and U.S. Pat. No. 7,801,330,
issued to Zhang et al., the contents of each which are incor-
porated herein by reference in their entirety. In general, using
parameters input or obtained via a calibration procedure, such
as camera height (H), vertical and horizontal camera field of
view angles (0, 0,), and camera tilt angle (o) and other
information, such as detected outer boundaries of an object
(e.g., a top and bottom of a person), the camera system can
generally determine the real world size and shape of an object
for identification purposes.

Human-based camera calibration model 304 may receive
and store the human model with the appropriate size from the
generic human model module 303 along with the appropriate
corresponding locations within the video image space. These
human models and corresponding locations may be stored in
alook-up table. For example, each of plural (x, y) coordinates
within and outside the video image space may be used to
identify a corresponding human model. For example, when
the (%, y) identifying coordinate corresponds to a centroid of
the human model, in estimating the existence of a human
object within a video image centered at location (x1, y1), the
lookup table of the human-based camera calibration model
304 may receive location (x1, y1) as an input and provide a
corresponding human model (including its size and location
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within the 2D image space). For example, the output may
comprise a boundary within the 2D image space or may
comprise the complete set of pixels (e.g., (X, y) coordinates of
all pixels) within the image space to describe the correspond-
ing human model.

FIG. 3B illustrates an example where several human mod-
els occupy a two-dimensional video image, each correspond-
ing to a different location with respect to the two-dimensional
video image. As illustrated, four human models 320a, 3205,
320c¢ and 3204 are associated with different (x, y) identifying
coordinates with respect to the two dimensional video image.
Human model 320q is smallest, corresponding to a location
farthest away from the video source in the three dimensional
real world. Human models 3205, 320¢ and 3204 correspond
to locations within the three dimensional real world that are
successively closer to the video source. The human models
320a, 3205, 320¢ and 3204 may all be derived from the same
full human shape model. However, it may be estimated that
only a portion of the full human shape model may occupy the
two dimensional video image at certain locations. Here, it is
estimated that the full human shape model corresponding to
human shapes 320c¢ and 3204 only partially occupying the
two dimensional video image space 330; human model 320¢
is estimated as a torso and head combination of the full human
shape model, where human model 3204 corresponds only to
a head portion of the full human shape model.

Each human model 320a, 3205, 320¢ and 3204 is associ-
ated with an (%, y) identifying coordinate with respect to the
two dimensional video image. In this example, the identify-
ing coordinates of human models 320a, 32056 320¢ and cor-
respond to the centroid of the human model. The (x, y) iden-
tifying coordinates associated with estimated shapes 320a,
3205 and 320c¢ are 321a, 3215 and 321 ¢ respectively, and fall
within the (%, y) coordinates of the video image. The (x, y)
identifying coordinate associated with estimated shape 3204
falls outside the (X, y) coordinates of the video image. That is,
in this example, the centroid of the human shape model asso-
ciated with 3204 is located below the video image and thus its
identifying (X, y) coordinate has a negative y-axis value,
which in this example, is outside the coordinates of the video
image (and not shown in FIG. 3B). For ease of calculations,
the (%, y) identifying coordinates may increment in pixel units
so that identifying coordinates 321a, 3216 and 321c¢ also
identify pixels of the video image.

FIG. 3B illustrates only four human models associated
with four respective identifying coordinates, for purposes of
ease of explanation. However, human-based camera calibra-
tion model 304 may store an human model for a large number
of (%, y) identifying coordinates, such several of these that
human models may overlap with one another. FIG. 3C illus-
trates a single row of (%, y) identifying coordinates 321 each
associated with a corresponding human model 320. For ease
of illustration, only a single row is illustrated, but human
models may be provided for plural rows of (x, y) identifying
coordinates, which may be regularly distributed in the x and
y directions over the image space 330. As discussed, the size
of the shapes may differ for the different locations (although
they are shown to have the same size in FIG. 3C). For
example, human-based camera calibration model 304 may
store a human shape for every pixel in the 2D image space 330
as (%, y) identitying coordinates of the 2D image space 330 as
well as for (%, y) coordinates outside the 2D image space 330
associated with a human model that is at least partially located
within the 2D image space 330. For example, for all (x, y)
pixel coordinates within the video image space 330, human-
based camera calibration model 304 may store an (X, y)
identifying coordinate and an associated human model
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(which may comprise a boundary or a set of pixels) of a
sub-space within the video image space 330 expected to be
occupied by a human when the centroid of the human model
is located at that (x, y) identitying coordinate within the video
image space 330 of a video image. The (x, y) identifying
coordinates may also include all (x, y) identifying coordinates
outside the video image space 330 that are associated with a
human model within a sub-space within the video image
space 330 (that is, a portion of the full human model may be
located within a sub-space of the video image space 330). For
some situations, the above referred to sub-space may include
the entire video image space 330 (corresponding to an esti-
mate of when a human is positioned to fully occupy the video
image). The human-based camera calibration model 304 may
store the (X, y) identifying coordinates and associated human
model as a look-up table. While the centroid of the ful human
shape model corresponds to the (X, y) identifying coordinates
of the human model in this example, other identifying points
of the human shape model may be used (e.g., an eye, nose,
center of head, top of head, toe, bottom of foot, etc.).

Human probability map computation module 305 uses the
foreground blob set of a particular frame of a video image
output by the foreground blob detection module 105 and the
human models with their corresponding identifying coordi-
nates output from the human based camera calibration model
304 to compute the human target probability for each of plural
locations within the two dimensional video image, such as for
each image pixel location. The plural calculated probabilities
may be associated with the plural locations to create a prob-
ability map. The plural locations may be the same as the (x,y)
identifying coordinates of the human models.

For each (x, y) identifying coordinate, a calculation is made
to determine a corresponding probability of an existence of
human object within a video image. When the (x, y) identi-
fying coordinates have a one-to-one correspondence to the
pixels of the video image, then a probability calculation is
made for each of the pixels of the video image. For example,
for each image pixel, a corresponding human probability may
be calculated as the likelihood of the existence of a human
target whose image center is on the pixel under consideration.
A probability map may be created mapping each of the prob-
ability calculations to each (X, y) identifying coordinate. The
probability map may be stored in a look-up table, associating
each (x, y) coordinates (as an input) with the associated
calculated probability. This look-up table may be the same as
the look-up table of the human-based camera calibration
model module 304 (storing human models as an entry) or may
be a second, separate look-up table.

As noted above, identifying coordinates may fall outside
the video image space, and thus calculations may be made to
determine corresponding probability of an existence of the
human object within the video image (regarding the portion
of the corresponding full human 2D model falling within the
image space (the human model) associated with these iden-
tifying coordinates). For example, if a centroid of a 2D full
human model corresponds to the identifying coordinates, it
may be located outside the video image space, but may cor-
respond to a 2D human model within the video image space
that is a portion of the full human model. For example, shoul-
ders and head of a full human model may constitute the 2D
human model (the shoulders and head falling within the
image space) even though the centroid of this full human
model (e.g., near a belly button of the full human model) falls
outside the image space (the centroid corresponding to the
identifying coordinates used to identify the corresponding
shoulders/head 2D human model). In some examples, a cer-
tain percentage of the full human 2D model must fall within
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the image space for a probability calculation to be made (or
considered). For example, when less than 10% or less than
20% of'the full human 2D model is within the image space (or,
when the human model is less than 10% or less than 20% of
the full human 2D model), the probability value associated
with the identifying coordinates may be set to zero orignored.
In some examples, when less than 40% of the full human 2D
model is within the image space, the probability value asso-
ciated with the identifying coordinates may be set to zero.
The probability calculation for each (x, y) identifying coor-
dinate may be the recall of the human model associated with
the corresponding (x, y) identifying coordinate and the fore-
ground blob set. For example, the probability calculation for
each (x, y) identifying coordinate may be the recall of the
human body pixels and the human boundary pixels within the
human model associated with the corresponding (%, y) iden-
tifying coordinate. The human model associated with the
corresponding (x, y) identifying coordinate may be output
from the human-based camera calibration model module 304
(e.g., stored in a look-up table of the module 304). The fore-
ground blob set may be output from the foreground blob
detection module 105. The recall of the estimated shape with
the foreground blob set may be calculated as the ratio of the
human model area that overlaps with the foreground blob set
to the human model area. Probability calculations that do not
exceed a certain threshold may be ignored. For example,
calculated probabilities less than 0.4 (on a scale 0of 0 to 1) may
indicate that there is no human target centering at that loca-
tion. Calculations other than a recall calculation may be made
to determine a probability of the existence of a human object
in the video image corresponding to each of the plural esti-
mated shapes. It will be understood that the calculated prob-
abilities are estimates. Thus, a calculated probability of 1 (on
a scale of 0 to 1) does not indicate absolute certainty of the
existence of a human at the relevant corresponding location.
FIG. 3D illustrates an exemplary method for calculating a
human probability map, which may be implemented by the
system of FIG. 3A. In step S340, the calibrated camera model
in 304 may be used to map the image plane of the 2D image
space onto the real world ground plane. In step S342, ahuman
model may be obtained for N locations in the 2D image space
(N being an integer equal or greater than 2). The calibrated
camera model 304 may be used to obtain the corresponding
convex hull shaped human model as the human model for
every image pixel position in the 2D image space. Each of the
human models may be associated with an identifying coordi-
nate in the 2D image space. For example, the human centroid
point of the human model may be used as the reference point
when performing the mapping to the identifying coordinate.
Assuming identifying coordinate of the 2D image space is the
centroid of a human in the image space, its corresponding
physical footprint location on the real world ground plane can
be computed through the calibrated camera model (e.g., as
shown in FIG. 5). A generic 3D (e.g., multi-cylinder) human
model is then placed on that footprint location. The size of the
3D model may correspond to previously obtained calibration
data. The generic 3D human model may be projected or
mapped onto the 2D image plane to obtain the human model
in the 2D image space. For example, the projection of a 3D
multi-cylinder human model may be used to form a corre-
sponding 2D image convex hull as the image human model
with the centroid at the associated identifying coordinate
(e.g., the image point under consideration). This way, every
valid image pixel may have a corresponding convex region
shaped human model (as the human model) showing the
approximate human size and shape at that image location. To
reduce the computational cost, the convex region shaped
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human models can be pre-computed at the initialization of the
system, the rectangular bounding box of the human convex
model can be used to obtain the approximate human recall
ratio using integral image. In step S344, the foreground blob
set may be extracted from a video image. The foreground blob
set may comprise one or more foreground blobs detected
using the human foreground pixels extracted by module 301
and/or the human boundary pixels extracted by module 302.
In step S346, for each of the N locations, a probability of the
existence of a human at that location is calculated to obtain a
probability map. The human probability measure may be
defined as the human recall ratio given there is enough human
boundary pixels in the image human convex model. The
human recall ratio in this example is the number of human
foreground pixels computed in 301 in an image human con-
vex model over the total area of this human convex model.
The order of the steps of the process of FIG. 3D may be
performed in an order other than that shown. For example,
step 344 may be performed before one or both of steps 340
and 342.

Referring to FIG. 3A, based on the human probability map
computed in 305, a human target estimation module 306 may
find a best number of human models (e.g., human objects) in
the video image and their locations. A global optimization
method can be used to find the best number of human models
and their locations. If m (m,, . . . , m,,) denotes the M set of
human models from all the potential human models within
the image space, the objective is to find the optimal set n* so
that a criterion function f(n*) reaches global maximum. That
is, the objective is to find:

argmaxf(n)

nem

where n is a particular set of the plural human models in the
image space, and f(n) is a function calculated for this set of
human models.

As discussed further below, the function f(n) is calculated
for each of several selected sets of human models, each set
selecting m; locations from the probability map (m, locations
being selected for each pass, where the number m, may differ
for each of these passes). Each set of human models may be
selected with a pass (or scan) of the probability map, with
certain constraining criteria used to select locations being
altered for each pass. Here, the function f(n) is defined as:

S)=wr*Rm)+wp*P(n)-wo*On)

where R is the human recall ratio, which is defined as the
percentage of the human foreground area over the entire area
of the group of n selected human models; P is the human
precision, which is the percentage of the foreground area that
is overlapping with the group ofn selected human models and
O is the human overlap ratio, which is the ratio of the area of
overlap of any ofthe n selected human models with each other
to the area occupied by all n selected human models, and w,
wpand w, are the weights. It may be advantageous to find the
best matching between the foreground region (foreground
blob set) and the union of the human models (the set of m
human models) without too much human overlaps. In prac-
tice, how to determine the above three weights may signifi-
cantly impact the detection results, for example, if more
weight is put on reducing the human overlap ratio, it may
result a lower human counting.

Each of the m, selected human models may be selected by
reference to the probability map output by the human prob-
ability map computation module 305. Several passes may be
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made to perform a calculation f(n), each pass selecting a
subset of m, human models from the 2D human models pro-
vided by the generic human model module 303 and associ-
ated with an (%, y) identifying coordinate in human-based
camera calibration model 304 (e.g., in a look-up table). As
noted, the value of m; may differ for each of these passes.
Selection criteria of the human models may differ for each
pass such that different human models are selected for the
different passes (and possibly, a different number m, of
human models are selected for the different passes). Selection
criteria may include requiring the selected human model to be
associated with a probability threshold P,,, as set forth by the
probability map. Selection criteria may also include the next
selected 2D human model to be a minimum distance D,
away from any previously selected 2D human models. The
minimum distance D,,,, may be a distance on the ground
plane of the real world. For example, centroids of the 2D
human models may be mapped or translated to locations
within the 3D real world and distances therebetween may be
calculated. The minimum distances D,,;, may be calculated
within the 2D image plane, but distances within the 2D image
plane may reflect corresponding 3D locations, such that for
human models nearby the video image source, larger separa-
tion may be required in the 2D image plane than that for more
distant human models.

In some exemplary embodiments, one or more fast one-
pass scanning of the probability map is used to determine the
human count and corresponding positions. FIG. 3E illustrates
amethod of performing a single pass of the probability map as
part of finding a best number of human models within a video
image. The method of FIG. 3E may be implemented by
human target estimation module 306. In step S350, probabil-
ity map is scanned to find a local maximum (which may be
qualified by certain selection criteria). The probability map
may be scanned in to locate an available unselected local
maximum that corresponds to a location in the real world
closest to the video source. The bottom of the probability map
may correspond to the bottom of the video image. In many
implementations, a video camera performing a surveillance
function may be mounted at a location higher than head level
of humans within the area to be monitored. Thus, the bottom
of'the video image may correspond to a location closest to the
video source. Scanning the probability map from bottom top
in this example allows selection of human models less likely
to correspond to an occluded object within the video image.

The probability map may be scanned bottom to top to find
a local maximum point, representing a local maximum of the
previously calculated probabilities (stored in the probability
mayp) for each of the plural locations within the image space.
A local maximum may be an (x, y) identifying coordinate
(e.g., pixel) having a probability value higher than the prob-
ability values of each of the immediately neighboring (x, y)
identifying coordinates (e.g., immediately neighboring pix-
els). Once a local maximum point is found, the human model
associated with this local maximum point as its identifying
coordinates is selected as one of the set of m, human models
instep S352. In step S354, all of the pixels within this selected
model’s internal region (e.g., falling within the 2D human
model’s boundary) and pixels corresponding to a minimum
distance D,,,,, away from this selected model (e.g., pixels in
the video image representing a minimum distance on the
ground plane of the real world) are excluded from further
consideration in this pass (and may be temporarily removed
from the probability map for this pass). Note that in this
example, pixels correspond to the identifying coordinates of
the human models and this description is equally applicable
to identifying coordinates that are not pixel locations. In some
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examples, the video image itself need not be analyzed further
at this stage, and the pixels may be excluded from further
consideration simply by their temporary removal from the
probability map. The probability map is scanned again to
select another local maximum point of the probabilities of the
human probability map associated with pixels that are greater
than the probability threshold P, and have notbe excluded. In
step S356, it is determined if any valid pixels have been
considered. That is, the probability may is reviewed for values
of that have not been excluded by the selection criteria nor
excluded by the selection of other human models in this scan
of the probability map. The scan of the probability map is
continued until all the valid pixels are considered and
removed from the map. Thus, m, human models may be
selected with this scan of the probability map. For this pass,
the function f(m,) is calculated for this set of m, human mod-
els.

Additional scans of the probability map may be performed,
with each on-pass scan having a different set of selection
criteria. FIG. 3F illustrates a method of performing plural
passes of the probability map as to find the best number of
human models within a video image. The method of FIG. 3F
may be implemented by human target estimation module 306.
Here, the value of at least one of D,,,,,, (minimum distance) and
P, (probability threshold) may be different for each scan. In
step S360, the selection criteria are set for a particular on-pass
scan. How many alterations of the selection criteria (and thus
how many scans) may be determined on a case-by-case basis,
taking into consideration desired accuracy and computational
overhead. In step S362, a scan of the probability map is made
to select a set of m human models in accordance with the
selection criteria. The value m is an integer equal to zero or
more and may differ for each selection (e.g., for each loop of
FIG. 3F performing step S362). Step S362 may be correspond
to the method of FIG. 3E. In step S364, a criterion function is
calculated for the selected m, human models, e.g., a corre-
sponding f(m,) is calculated for the m, human models selected
in this scan. Additional scans may be performed with new
selection criteria (S366). When all scans of the probability
map are complete, the maximum of f(n), ne{m,, . . . m,,} of
the group of scans is determined. The set of human models
corresponding to this maximum value is determined to cor-
respond to human objects within the video image (S368).
Using the (x,y) identifying coordinates (e.g., pixel locations)
of the human models determined to represent human objects
in the video image, the real world location on the ground
plane may be determined.

In an alternative embodiment, if m denotes the set of
human models from all the potential human models within
the image space, the objective may be to find the optimal set
m* so that a criterion function g(m*) reaches global maxi-
mum. That is, the objective is to find a maximum of:

gom) =" f(n)
n=1

where n is a particular one of the plural human models in the
image space, m is a number of selected human models (which
may vary for different summation calculations), and f(n) is a
function calculated for each of the m human models, rather
than the group of models.

Here, the function f(n) is defined as:

S)=wr*Rm)+wp*P(n)-wo*On)
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where R is the human recall ratio, which is defined as the
percentage of the human foreground area over the entire area
of the selected human models; P is the human precision,
which is the percentage of the foreground area that is over-
lapping with the selected human models and O is the human
overlap ratio, which is the overlap of the selected nth human
model with areas occupied by the 1% to n—1th human models
[the areas occupied by human models previously selected in
the current pass in calculating 2f(n)], and w,, w, and w, are
the weights. Each of the passes of scanning the probability
map discussed above may be associated with calculating
Zf(n), with different constraints on the selection criteria in
selecting the local maximums of the probability map for each
pass. Other functions f(n) may be used other than those
described herein.

FIGS. 6A, 6B and 6C show detection results of the video
surveillance system 101 according to one example. For one
input frame, FIG. 6A is the output of the human body detec-
tion module 301 and human boundary pixel detection module
302, where the pixels 301a indicate the detected human body
pixels and the pixels 302a show the human boundary pixels.
The foreground blob set is represented in FIG. 6A as the
combination of the detected human body pixels 301a and the
human boundary pixels 302a. The detected human body pix-
els and human boundary pixels are superimposed over the
original video image frame defining the video image space
330. In this example, the remainder of the video image in this
video image frame (other than the foreground blob set) is part
of the background image.

FIG. 6B illustrates the human probability map computed
from FIG. 6A. In this example, the human probability map
represents calculated probabilities on a grey scale, with black
corresponding to a probability of zero (0) and white corre-
sponding to a probability of one (1). Each of the calculated
probabilities is represented at a location within the image
space 330 corresponding to the pixel corresponding to the
identifying coordinates of a corresponding human model.

FIG. 6C shows the final human detection result, illustrating
aplurality of human models 320 (pink convex shape outline)
corresponding to the detected human. Each of these human
models may be associated by an identifying coordinate (such
as a centroid) which may identify the location of the detected
human in the 3D real world and mapped to the ground plane
of' the real world (not shown).

FIGS. 7A, 7B and 7C illustrate an example of measuring
human crowd density based on the human detection results.
FIG. 7A illustrates an exemplary result of the video surveil-
lance system 101 detection results, showing plural 2D human
models 320 (pink convex hulls), each corresponding to a
detected human, overlaying the original video image. FIG.
7B illustrates mapping the detected humans to the real world
physical ground plane, showing a top down representation of
the video image of FIG. 7A with each of the circles repre-
senting the human model 320 as mapped to the physical
ground plane of the real world and thus identifying a location
of the detected human within the real world. The detected
human targets can be mapped onto a physical ground plane as
calibration has provided a correlation between a known size
of'the calibration model, a location within the 2D image, and
a corresponding size within the images space. With known
locations, calculations may be made to count the number of
people within a certain identified area (e.g., selected by a
user) or within the entire scene. Calculations may also be
made to determine a number of people per area. Real crowd
density measurements on each ground location may also be
directly computed. The actual definition of the crowd density
measure may depend on the real application, in particular, on
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the size of the crowd to be monitored. For example, for the
scenario shown in FIGS. 6A, 6B and 6C, one may use the
number of people within a 2 meter radius as the crowd density
measure. While for the scenario in FIGS. 7A, 7B and 7C, the
crowd density of a location can be defined as the number of
people within a 6 meter radius. FIG. 7C illustrated the crowd
density map using a radius of 6 meters with higher intensity
pink signifying higher crowd density.

Based on the crowd density measures for each video frame,
one can detect many crowd related events as shown in FIG. 8,
including crowd detection, crowd gathering and crowd dis-
perse, which may be detected by modules 801, 802 and 803
respectively of event detection module 108 of FIG. 1. FIG. 9
illustrates an exemplary method of how to define and detect a
crowded area. Block 901 illustrates how to define a crowd
region event. The user may first select a region of interest on
the image (e.g., within the image space). Next, some crowd
density threshold may be used to determine how much crowd
is of interest. The thresholds may be the number of person
within a certain radius of area. Hysteresis thresholds may be
used for more robust performance. For example, if we define
the crowd density as the number of person inside a 3 meter
radius area, one may set two crowd density thresholds:
T)ign=10and T,,, =8. A region may be considered as a crowd
region only if the corresponding crowd density is greater or
equal than T),.,,. A crowd region becomes non-crowd only if
the corresponding crowd density becomes less or equal than
T,,,.- The crowd region may be defined by identified crowd
and may change location and/or shape from frame to frame. A
centroid of the crowd region may be used to describe the
crowd location. The minimum duration threshold may define
the minimum time duration a crowd region must keep as
crowd before triggering the event detection. For a new video
frame input, block 902 looks through all the detected human
targets to see if it belongs to a crowd region, then block 903
checks all the crowd regions to update their status. Once
detected, crowds and their locations may be tracked frame by
frame of the video image. For example, as long as a crowd is
detected and continues to meet the minimum threshold T,,,,
human models associated with the crowd region may define
the crowd within subsequent frames of the video image as
long as they remain within an area meeting the minimum
crowd density. Additional human models may be added to the
detected crowd as they move into the detected crowd region.

FIG. 10 illustrates an exemplary process on each detected
human target. Block 1001 checks if the current target is inside
or near an existing crowd region. If “yes”, block 1001 updates
the person count for thatregion. If“no”, block 1002 computes
the crowd density on the current target’s location, then block
1004 checks whether the crowd density measure is greater
thanorequal to a threshold T,,,,,. I “yes”, a new crowd region
is created centered at the current target. If “no”, continue to
process the next human target.

FIG. 11 illustrates an exemplary process on each crowd
region. Block 1101 updates the region area and crowd count
based on the target process results; Block 1102 checks if the
density count is still greater than a user defined the threshold;
if “no”, the crowd region is removed from the monitoring list.
Block 1104 further checks if the crowd duration of the crowd
region under process is longer or equal to a user defined
threshold. If “yes”, block 1105 further checks if the corre-
sponding crowd event has been reported or not, if not, block
1106 will take an action, such as report the crowd event and
mark this crowd region as “reported”.

FIG. 12 illustrates a method that may be used to define and
detect crowd “gathering” and “disperse” events. Here “gath-
ering” and “disperse” refer to the two processes of forming
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and ending of a crowd gathering spot. In this example, a
crowd gathering spot refers to a region with high local sta-
tionary crowd density and is different from a moving crowd
such as in a parade. However, the invention is not limited
thereto and this method may also be applied to detection of
moving crowd gathering spots. Block 1201 illustrates how a
crowd gathering spot may be defined. The user may first
select a region of interest on the image. Next, some crowd
density threshold may be used to determine how much crowd
is ofinterest. The minimum duration threshold may define the
minimum time duration a crowd region must keep as crowd to
be considered as a valid gathering spot. Block 1202 detects
the crowd gathering spots. Block 1203 updates and monitor
the detected crowd gathering spots and detects the crowd
“gathering” and “disperse” events.

FIG. 13 illustrates one example of defining of a crowd
gathering spot. It includes an inner region as indicated by
1301 and an outer region as indicated by 1302. The two
regions may be defined by a center point O, a short radius r
and a long radius R. In this example, the crowd gathering spot
may satisfy the following two criteria:

The crowd density of the inner region must be greater or

equal than a predefined threshold;

The person count in the outer region must be smaller (e.g.,

2 times, 4 times, 10 times, etc. smaller) than the person
count in the inner region. Alternatively, the crowd den-
sity in the outer region must be smaller (e.g., 2 times, 4
times, 10 times, etc., smaller) than the crowd density in
the inner region.

The above two criteria may indicate that the inner region is
a crowd gathering spot, not just a region within a big crowd.

FIGS. 14A and 14B show an example of a crowd gathering
spot. FIG. 14A and FIG. 14B each shows a video frame and
the detected human targets mapped onto a physical ground
plane of the real world. Although FIG. 14A has more human
targets, only FIG. 14B contains a crowd gathering spot as
defined above.

FIG. 15 illustrates an exemplary method of detecting the
crowd gathering spots. For each detected human target,
blocks 1501 checks if it belongs to an existing crowd gather-
ing spot. If “yes”, it is used to update the current status of the
corresponding crowd gathering spot in block 1502. If “no”,
block 1503 further checks if the current target is the center of
anew crowd gathering spot. If “yes”, block 1504 starts a new
crowd gathering spot for further monitoring. If “no”, the
module continues to check the next human detection.

FIG. 16 illustrates an exemplary method of updating the
crowd gathering spots and detecting of crowd “gathering”
and “disperse” events. Block 1601 updates the location and
area of the crowd gathering spot using the new human detec-
tion results on the video frame under consideration. Block
1602 checks if the crowd “gathering” event has been detected
from the current crowd gathering spot. If “no”, block 1603
continues to detect the “gathering” event by checking if a
crowd gathering spot has been successfully updated for cer-
tain duration. This duration threshold may be set by the user
at the rule definition time. Once a crowd gathering spot has
generated a “gathering” event, block 1604 further monitor the
gathering spot to detect the “disperse” event. Here, a crowd
“disperse” eventis defined as a crowd gathering spot becomes
an empty spot or a spot with low density (e.g., below the
minimum crowd density threshold T,,,,) within a short period
of'time. Block 1604 detects two special moments of a crowd
gathering spot: the time it becomes not crowded and the time
if becomes empty or low. If the time between these two
moments is shorter than a user define threshold, a crowd
“disperse” event is detected.
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FIG. 17 illustrates an example of a multi-camera system to
which this invention may be applied. In this example, two
cameras 1702 and 1704 separately take video images of a
scene of interest from different perspectives. The video sur-
veillance system 101 and methods described herein may be
the same as described herein for each camera 1702 and 1704
for the change detection module 103, the motion detection
module 104, foreground blob detection module 105, generic
human model module 303, human-based camera calibration
model 304 and human probability map computation module
305—that is, each camera may have their own module or
module functionality (if circuitry is shared) for these mod-
ules.

The 2D human models to the respective image space pro-
vided by human-based camera calibration model 304 of each
video camera 1702, 1704, may also be associated with a
coordinate of the physical ground plane of the real world. For
example, for the human-based camera calibration model
module 304 for each camera, an additional entry may be made
for a corresponding physical ground plane coordinate to
thereby associate each of the N human models with a the
same. In calculating a human probability map for each of the
cameras 1702, 1704, the probabilities of each probability map
may be mapped to the physical ground plane rather than the
2D image space.

In one example, human target estimation module 306,
detecting a best number of humans may perform scans of a
first probability map of one camera in a manner described
above, that is, within the constraints of the search criteria,
search for a local maximum of the first probability map. In
calculating the criterion function to determine a maximum for
the M sets of human models m(m, . . . m,,), the objective is
to find:

argmaxfy (n) + f2(n)

nem

where n is the particular set of plural 3D human models,
which may have identifying coordinates in the physical
ground plane to which the probabilities are mapped of each of
the two human probability maps. That is, upon selecting a
point in the real world as associated with a human model for
a model set, the 2D image space human models associated
with this point are identified for each camera system, with one
human model used to calculate f; (n) and the other to calculate
fy(n). fi(n) and f,(n) may be the same as the functions
described herein (respective to the human foreground blob set
or human foreground area extracted from the appropriate
video image):

Sm)=wp*R(m)+wp*P(n)-wo*Om)

where (for the respective n selected 2D human models
associated with the video image and the human foreground
area of that video image) R is the human recall ratio, which is
defined as the percentage of the human foreground area over
the entire area of the group of n selected human models; P is
the human precision, which is the percentage of the fore-
ground area that is overlapping with the group of n selected
human models and O is the human overlap ratio, which is the
ratio of the area of overlap of any of the n selected human
models with each other to the area occupied by all n selected
human models the selected nth human model with areas occu-
pied by the 1% to n—1th human models [the areas occupied by
human models previously selected in the current pass in cal-
culating f(n)], and wy, w, and w, are the weights. It is noted
that the weights may differ between functions f;(n) and f,(n).
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Exclusion of pixels for further consideration in selecting the
next local maximum may project the 3D human model asso-
ciated with the ground plane coordinate of the previously
selected human model back to each of the two probability
maps in the respective image plane.

In a further alternative, a single probability map may be
used for multiple cameras. In the example of FIG. 17, prob-
ability calculations may be made for each of the 2D video
images, as described herein and create two image plane prob-
ability maps, each corresponding to the respective 2D image
plane. Probabilities of the image plane probability map may
be set to zero if they do not exceed a certain threshold (which
may be the same or different for each image plane probability
map). The identifying coordinates within each image plane
probability map may be translated to a ground plane coordi-
nate in the real world for each of the image plane probability
maps, creating a ground plane probability map for each video
image. The two ground plane probability maps may be
merged by multiplying probabilities that share the same
ground plane coordinates to create a merged probability map.
The merged ground plane probability map may be scanned to
find local maximums. Each found local maximum may iden-
tify separate human models for each of the video images
within their respective image space which may then be used
to calculate f,(n) or f,(n) (described above) as appropriate.
Performing multiple scans of the merged ground plane prob-
ability map for plural local maximums may be done to find
subsequent human models (one for each of the video images)
and to calculate

VADL A

Selection constraints (such as minimum probability
threshold and minimum distance within the 3D real world)
may be altered and a new scan pass implemented to find the
optimum set of m human 3D models (corresponding in this
example to 2 m 2D human models).

In another example, human target estimation module 306,
detecting a best number of humans may perform scans of a
first probability map of one camera in a manner described
above, that is, within the constraints of the search criteria,
search for a local maximum of the first probability map. In
calculating the criterion function to determine a maximum for
the sets of m human models, the objective is to find a maxi-
mum of:

2N )

where n is the identifying coordinate in the physical ground
plane to which the probabilities are mapped of each of the two
human probability maps. That is, upon selecting a point in the
real world, the 2D image space human models associated
with this point are identified for each camera system, with one
human model used to calculate f; (n) and the other to calculate
f,(n). fi(n) and f,(n) may be the same as the function
described above (respective to the human foreground blob set
or human foreground area extracted from the appropriate
video image):

S)=wr*R(m)+wp*P(n)-wo*O(n)

where R is the human recall ratio, which is defined as the
percentage of the human foreground area over the entire area
of the selected human models; P is the human precision,
which is the percentage of the foreground area that is over-
lapping with the selected human models and O is the human
overlap ratio, which is the overlap of the selected nth human
model with areas occupied by the 1% to n—1th human models
[the areas occupied by human models previously selected in
the current pass in calculating 2f(n)], and w, w, and w,, are
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the weights. It is noted that the weights may differ between
functions f,(n) and £f,(n). Exclusion of pixels for further con-
sideration in selecting the next local maximum may project
the 3D human model associated with the ground plane coor-
dinate ofthe previously selected human model back to each of
the two probability maps in the respective image plane.

In a further alternative, a single probability map may be
used for multiple cameras. In the example of FIG. 17, prob-
ability calculations may be made for each of the 2D video
images, as described herein and create two image plane prob-
ability maps, each corresponding to the respective 2D image
plane. Probabilities of the image plane probability map may
be set to zero if they do not exceed a certain threshold (which
may be the same or different for each image plane probability
map). The identifying coordinates within each image plane
probability map may be translated to a ground plane coordi-
nate in the real world for each of the image plane probability
maps, creating a ground plane probability map for each video
image. The two ground plane probability maps may be
merged by multiplying probabilities that share the same
ground plane coordinates to create a merged probability map.
The merged ground plane probability map may be scanned to
find local maxima. Each found local maximum may identify
separate human models for each of the video images within
their respective image space which may then be used to cal-
culate f)(n) or f,(n) (described above) as appropriate. Per-
forming multiple scans of the merged ground plane probabil-
ity map for plural local maximums may be done to find
subsequent human models (one for each of the video images)
and to calculate

Z,Themsm)

Selection constraints (such as minimum probability
threshold and minimum distance within the 3D real world)
may be altered and a new scan pass implemented to find the
optimum set of m human 3D models (corresponding in this
example to 2 m 2D human models).

The foregoing is illustrative of example embodiments and
is not to be construed as limiting thereof. Although a few
example embodiments have been described, those skilled in
the art will readily appreciate that many modifications are
possible in the example embodiments without materially
departing from the novel teachings and advantages of the
present disclosure. For example, although the disclosure has
described the detection of human objects within a video
image, the invention should not be considered limited thereto
and other objects of interest may also be detected.

What is claimed is:
1. A method of detecting human objects in a video, com-
prising:

determining pixels of a video image are foreground pixels,
the group of foreground pixels constituting a foreground
blob set of one or more foreground blobs;

for each of N locations within the video image, where N is
an integer, comparing a corresponding predetermined
shape with the foreground blob set to obtain a corre-
sponding probability of a human at the location, thereby
obtaining N probabilities corresponding to the N loca-
tions;

using the N probabilities, determining X humans are rep-
resented by the foreground blob set, where X is whole
number;

using the determination of the representation of X humans,
determining a crowd density within a first area of the real
world;

comparing the crowd density to a threshold; and
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providing at least one of a report, an alarm, and an event
detection when the crowd density exceeds the threshold,

wherein a size of the corresponding predetermined shape
for each of the N locations is determined in response to
calibration of a video system,

wherein the video system is used to obtain the video image.

2. The method of claim 1, further comprising using the
probability map to determine a location of each of the X
humans.

3. The method of claim 2, wherein the determined location
of'each of the X humans is a location within an image plane
corresponding to the video image.

4. The method of claim 2, wherein the determined location
of'each ofthe X humans is a location with respect to a physical
ground plane corresponding to the real world.

5. The method of claim 1,

wherein determining foreground pixels of the video image

comprises comparison of a first frame of a video image
without foreground objects with comparison of a second
frame of the video image containing the foreground
objects.

6. The method of claim 1, wherein the predetermined shape
is the same for each of the N locations.

7. The method of claim 1, wherein the predetermined shape
for at least some of the N locations has a different size.

8. The method of claim 1,

wherein the calibration of the video system comprises

determining an image size of a portion of the video
image corresponding to an average human size at each of
the N locations, and

wherein the size of the predetermined shape for each of the

N locations is determined in response to the correspond-
ing image size.

9. The method of claim 1,

wherein, for each of the N locations, the corresponding

predetermined shape comprises an estimate of a fore-
ground image part to be occupied in the video image
when a human exists at the corresponding location.

10. The method of claim 9, wherein the estimate of the
foreground image part for each of the N locations is calcu-
lated based on a projection of a model of a human in the real
world onto an image plane of the video image.

11. The method of claim 1,

wherein the video image comprises a plurality of image

frames, each image frame comprising a two dimensional
image having the N locations, each of the N locations
identified by a corresponding X, y coordinate pair within
the two dimensional image.

12. The method of claim 11,

wherein each of the N locations is associated with a corre-

sponding predetermined shape with respect to an image
plane corresponding to the video image.

13. The method of claim 1, further comprising, for each of
the N locations, calculating a recall ratio of the corresponding
predetermined shape and the foreground blob to determine an
associated probability.

14. The method of claim 13, wherein for each of the N
locations, calculating the recall ratio comprises determining a
ratio of (a) an area comprising an overlap of an area occupied
by the predetermined shape and the foreground blob and (b)
an area of the foreground blob.

15. The method of claim 1, further comprising:

creating a probability map with the N probabilities;

determining local maximums of probabilities of the prob-

ability map.
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16. The method of claim 15, further comprising:

selecting a first location of the N locations corresponding

to a local maximum of the probability map;

obtaining a first predetermined shape corresponding to the

first location; and

calculating a first ratio of (a) an area comprising an overlap

of'an area occupied by the first predetermined shape and
the foreground blob and (b) an area of the foreground
blob.

17. The method claim 16, wherein the first ratio is used to
determine that X humans are represented by the foreground
blob.

18. The method of claim 16, further comprising:

calculating an overlap of an area occupied by the second

predetermined shape and an area occupied by the first
predetermined shape.

19. The method of claim 15, further comprising calculating
aprecision value and a recall value for each of m locations of
the N locations, m being an integer, each of the m locations
corresponding to a local maximum of the probability map.

20. The method of claim 19, wherein each of the m loca-
tions are selected sequentially 1 to m, a selection of an (m-1)
th location excluding selection of an mth location that falls
within a first predetermined distance of the (m-1)th location.

21. The method of claim 20, wherein each of the m loca-
tions are selected sequentially 1 to m wherein the selection of
a next location of the m locations comprises selecting a loca-
tion that is closest to a bottom edge of the video image for
those locations corresponding to a local maximum that have
not been excluded.

22. A method of detecting human objects in a video, com-
prising:

determining pixels of a video image of a real world scene

are foreground pixels, the group of foreground pixels
constituting a foreground blob set of one or more fore-
ground blobs;

for each of N locations within the video image, where N is

an integer, comparing a corresponding predetermined
shape with the foreground blob set to determine X
humans are represented by the foreground blob set,
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where X is whole number and a location of each of the X
humans is determined as a location within a horizontal
plane of the real world;

using the determination of the representation of X humans,

determining a crowd density within a first area of the real
world;
comparing the crowd density to a threshold; and
providing at least one of a report, an alarm, and an event
detection when the crowd density exceeds the threshold,

wherein a size of the corresponding predetermined shape
for each of the N locations is determined in response to
calibration of a video system,

wherein the video system is used to obtain the video image.

23. The method of claim 22, further comprising detecting
the existence of a crowd by reviewing at least some of the
locations of the X humans.

24. The method of claim 22, further comprising determin-
ing an existence of a crowd when it is determined that Y of the
X humans are located within a an area of the horizontal plane
of the real world.

25. The method of claim 24, wherein the first area com-
prises a predetermined geometric shape having a predeter-
mined area size within the real world.

26. The method of claim 24, wherein the first area com-
prises an area defined by a circle.

27. The method of claim 22, further comprising:

determining a first crowd density within the first area cor-

responding to a first frame of the video image;
determining a second crowd density within the first area
corresponding to a second frame of the video image;
determining a crowd gathering event in response to the first
crowd density and the second crowd density.
28. The method of claim 22, further comprising:
determining a first crowd density within the first area cor-
responding to a first frame of the video image;
determining a second crowd density within the first area
corresponding to a second frame of the video image;
determining a crowd dispersing event in response to the
first crowd density and the second crowd density.

#* #* #* #* #*



